## EXERCISE 1 (5 marks)

1-The complex plane is related to a direct orthonormal coordinate system. We consider the points $\mathrm{A}, \mathrm{B}$-and C of respective affixes: $z_{A}=1+i \sqrt{3}, z_{B}=1+i$ and $z_{C}=2 i\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$. Justify whether each of the statements a), b), c) is true or false.
a. $\arg \left(z_{C}\right)=\frac{\pi}{12}$.
0.5mark
b. $\frac{z_{A}}{z_{B}}$ in algebraic form is $\frac{\sqrt{3}+1}{2}+i \frac{\sqrt{3}-1}{2}$.
0.5 mark
c. $\frac{z_{A}}{z_{B}}$ in trigonometric form is $\sqrt{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$ 0.5 mark
2. The complex plane is referred to a direct orthonormal coordinate $(O ; \vec{u}, \vec{v})$ system.

Consider the points, $A(-i), B(3), C(2+3 i)$ and $D(-1+2 i) .$.
a. Give the coordinate of the midpoints of the segments [ $A C$ ] and [ $B D$ ]. What can we deduce of the quadrilateral $A B C D$ ?
b. Geometrically interpret the modulus and the argument of $\frac{z_{C}-z_{A}}{z_{D}-z_{B}}$. Calculate $\frac{z_{C}-z_{A}}{z_{D}-z_{B}}$.

1 mark
c. Deduce from b. the properties verified by the diagonals of $A B C D$. What is the nature of $A B C D$ ?

1 mark
EXERCISE 2 (5 marks)
The plane $P$ is provided with an orthonormal coordinate system ( $O ; \vec{i}, \vec{j}$ ) (graphic unit 3 cm)

1. Consider the function defined on $\left[0,+\infty\left[\right.\right.$ by: $\left\{\begin{array}{l}f(x)=\frac{\ln (x+1)}{x} \text { si } x>0 \\ f(0)=1\end{array}\right.$ :

Show that $f$ is continuous at 0 .
0.5 mark
2. a. Give the sense of variation of the function $g$ defined by
$g(x)=\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)$.
0.5 mark

Calculate $g(0)$ and deduce that on $\mathbb{R}^{+}: \ln (1+x) \leq\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)$.
b. By a similar study, show that if, $x \geq 0$, then $\ln (1+x) \geq x-\frac{x^{2}}{2}$.
c. Establish that for all strictly positive x we have $-\frac{1}{2} \leq \frac{\ln (1+x)-x}{x^{2}} \leq-\frac{1}{2}+\frac{x}{3}$..

Deduce that f is differentiable at zero and that $f^{\prime}(0)=-\frac{1}{2}$
1.5 mark
3. a. Let $h$ be the function defined on $\left[0,+\infty\left[\right.\right.$ by $h(x)=\frac{x}{x+1}-\ln (1+x)$.

Study its sense of variation and deduce the sign of $h$ on $[0,+\infty[$.
0.5 mark
b. Show that on, $\left[0,+\infty\left[, f^{\prime}(x)=\frac{h(x)}{x^{2}}\right.\right.$.
0.5 mark
c. Draw up the variation table of $f$ by specifying the limit of $f$ in $+\infty$
d. Denote by C the graphical representation of $f$. Construct the tangent T to C at the point of abscissa 0 . Show that C admits an asymptote. Draw curve C.

EXERCISE 3 (5 marks)

The table below describes the average number y of objects that a worker starting to work on an assembly line produces in one day, on the xth day that he works on that line.

| $x_{i}$ | 1 | 3 | 5 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y_{i}$ | 27 | 41 | 46 | 48 | 49 |

A. In this part, the functions of the calculator will be used for the statistical calculations (the details of the calculations are not required).

1. The plane $P$ is provided with an orthogonal reference of graphic units 1 cm for a day on the abscissa and 1 cm for 5 objects on the ordinate.

Plot a scattered diagram of the points associated with the statistical series (xi, yi).
2. Determine the coordinates of the mean point $G$ of this points and place it on the previous graph.
3. a. Determine the linear correlation coefficient of the statistical series (xi, yi) correct to $10^{-2}$.
b. Give a regression line (d) of $y$ on $x$ by the least squares method.

Represent the line (d) on the previous graph. 1 mark
c. What day must the worker produce 83 objects?

1 mark
Exercise 4 (5 marks)
Urn A contains four red balls and six black balls. Urn B contains a red ball and nine black balls. The balls are indistinguishable to the touch.

Part A
A player has a six-sided die, perfectly balanced, numbered from 1 to 6 . He throws it once: if he rolls 1 , he draws a ball at random from urn $A$, otherwise he draws one at random from urn B.

1. Let $R$ be the event "the player gets a red ball". Show that $p(R)=0.15$.
0.75 mark
2. If the player rolls a red ball, is the probability that it comes from A greater than or equal to the probability that it comes from $B$ ?
0.75 mark

Part B
The player repeats the test described in part A twice, under identical and independent conditions (that is to say that at the end of the first test, the ballot boxes return to their initial composition).

Let x be a non-zero natural number.
During each of the two tests, the player wins x euros if he obtains a red ball and loses two euros if he obtains a black ball.

We denote by G the random variable corresponding to the algebraic gain of the player in euros at the end of the two tests. The random variable $G$ therefore takes the values $2 x, x-1$ and -4.

1. Determine the probability law of $G$.
2. Express the expectation $E(G)$ of the random variable $G$ as a function of $x$.
3. For which values of $x$ do we have $E(G)>0$ ?
1.5mark

1mark

